FONCTIONS VECTORIELLES

PLAN DU COURS

I.	Dérivabilité des fonctions vectorielles		1
	I. 1.	Définitions et propriétés	1
	I. 2.	Opérations sur les fonctions dérivables	3
H.	. For	NCTIONS VECTORIELLES DE CLASSE \mathscr{C}^k	4
	II. 1.	Définitions et propriétés	4
	II. 2.	Opérations sur les fonctions de classe $\mathscr{C}^k \ldots \ldots \ldots$	5
	II 3	Dévelonnement limité d'une fonction de classe \mathscr{C}^k	5

Les fonctions considérées dans la suite sont définies sur un intervalle I de \mathbb{R} non vide et non réduit à un point et sont à valeurs dans \mathbb{R}^n pour $n \ge 1$.

I. Dérivabilité des fonctions vectorielles

I. 1. DÉFINITIONS ET PROPRIÉTÉS

DÉFINITION 1 – Dérivabilité

Soit $f: I \to \mathbb{R}^n$ une fonction.

■ Soit $a \in I$. On dit que f est dérivable en a si le taux d'accroissement τ_a de f en a défini sur $I \setminus \{a\}$ par :

$$\tau_a(t) = \frac{f(t) - f(a)}{t - a}$$

admet une limite finie dans \mathbb{R}^n lorsque t tend vers a.

Le cas échéant, cette limite est alors appelée nombre dérivé de f en a et est notée f'(a) ou $\frac{\mathrm{d}f}{\mathrm{d}t}(a)$.

On dit que f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, la fonction $t \mapsto f'(t)$ définie sur I et à valeurs dans \mathbb{R}^n est appelée la dérivée de f.

NOTATION On notera $\mathcal{D}(I,\mathbb{R}^n)$ l'ensemble des fonctions à valeurs dans \mathbb{R}^n dérivables sur I.

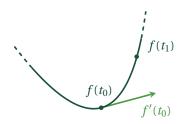
Remarque La limite de la fonction $\tau_a: \mathbb{I}\setminus \{a\} \to \mathbb{R}^n$ est dans le cadre du chapitre sur les espaces vectoriels normés. En particulier, la norme définie sur \mathbb{R}^n n'a pas d'influence sur la valeur de la limite.

Interprétation cinématique

Si n = 2 ou n = 3 et que la position d'un point matériel M_t dépend du temps, on peut lui associer la fonction :

$$f: t \mapsto \overrightarrow{\mathrm{OM}}_t$$

- L'ensemble des f(t) pour t dans l'intervalle I de définition est la $trajectoire\ du\ point\ M_t$.
- Si la fonction f est dérivable sur I, pour $t_0 \in I$, le vecteur $f'(t_0)$ est le *vecteur vitesse instantané* du point M_t à l'instant t_0 .



Proposition 1 – Dérivabilité et développement limité à l'ordre 1

Soient $f: I \to \mathbb{R}^n$ une fonction, $a \in I$ et $v \in \mathbb{R}^n$. Les deux assertions suivantes sont équivalentes :

- (1) La fonction f est dérivable en a et f'(a) = v.
- (2) Il existe une fonction $\varepsilon: I \to \mathbb{R}^n$ vérifiant $\lim_{t \to a} \varepsilon(t) = 0$ et:

$$\forall t \in I$$
, $f(t) = f(a) + (t - a)v + (t - a)\varepsilon(t)$

Remarque L'assertion (2) exprime le fait que f possède un développement limité à l'ordre 1 en a.

PROPOSITION 2 – Dérivabilité implique continuité

Soient $f: I \to \mathbb{R}^n$ une fonction et $a \in I$.

- Si la fonction f est dérivable en a alors elle continue en a.
- \blacksquare Si la fonction f est dérivable sur I alors elle continue sur I.

REMARQUE La réciproque est fausse.

On rappelle que si $f: I \to \mathbb{R}^n$ est une fonction et si $\mathscr{B} = (e_1, ..., e_n)$ est une base de \mathbb{R}^n , on appelle *fonctions coordonnées de f dans la base* \mathscr{B} les fonctions $f_1, ..., f_n$ définies sur I et à valeurs réelles vérifiant :

$$\forall t \in I$$
, $f(t) = \sum_{i=1}^{n} f_i(t)e_i$

En particulier, si \mathcal{B} est la base canonique de \mathbb{R}^n , cela donne :

$$\forall t \in I, \quad f(t) = (f_1(t), ..., f_n(t))$$

PROPOSITION 3 – Dérivabilité et fonctions coordonnées

Soient $f: I \to \mathbb{R}^n$ une fonction et $a \in I$. On introduit f_1, \dots, f_n les fonctions coordonnées de f dans une base $\mathscr{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n .

■ La fonction *f* est dérivable en *a* si et seulement si chacune des fonctions coordonnées de *f* est dérivable en *a*. On a alors dans ce cas :

$$f'(a) = \sum_{i=1}^{n} f_i'(a)e_i$$

■ La fonction *f* est dérivable sur I si et seulement si chacune des fonctions coordonnées de *f* est dérivable sur I. On a alors dans ce cas :

$$\forall t \in I, \quad f'(t) = \sum_{i=1}^{n} f'_i(t)e_i$$

Remarque Lorsque \mathscr{B} est la base canonique de \mathbb{R}^n , on a donc, si $f: \mathbb{I} \to \mathbb{R}^n$ est dérivable sur \mathbb{I} :

$$\forall t \in I, \quad f'(t) = (f'_1(t), \dots, f'_n(t))$$

EXEMPLE 1

On définit deux fonctions f et g en posant :

$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$
 et $g: \mathbb{R} \longrightarrow \mathbb{R}^2$
 $t \longmapsto (\cos t, \sin t)$ $t \longmapsto (-\sin t, \cos t)$

Prouver que f et g sont dérivables sur \mathbb{R} et exprimer leurs dérivées.

PROPOSITION 4 – Caractérisation des fonctions constantes

Soit $f: I \to \mathbb{R}^n$ une fonction.

Alors f est constante sur I si et seulement si elle est dérivable et de dérivée nulle sur I.

I. 2. OPÉRATIONS SUR LES FONCTIONS DÉRIVABLES

PROPOSITION 5 – Combinaison linéaire

Soient $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^n$ deux fonctions, $a \in I$ et $\lambda \in \mathbb{R}$.

■ Si f et g sont dérivables en a alors $\lambda f + g$ est dérivable en a et :

$$(\lambda f + g)'(a) = \lambda f'(a) + g'(a)$$

■ Si f et g sont dérivables sur I alors $\lambda f + g$ est dérivable sur I et :

$$(\lambda f + g)' = \lambda f' + g'$$

PROPOSITION 6 – Composition par une application linéaire

Soient $f: \mathbb{I} \to \mathbb{R}^n$ une fonction, $u: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire et $a \in \mathbb{I}$.

■ Si f est dérivable en a alors $u \circ f$ est dérivable en a et :

$$(u \circ f)'(a) = u(f'(a))$$

■ Si f est dérivable sur I alors $u \circ f$ est dérivable sur I et :

$$(u \circ f)' = u \circ f'$$

PROPOSITION 7 – Application bilinéaire et dérivation

Soient $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^p$ deux fonctions, $B: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ une application bilinéaire et $a \in I$.

■ Si f et g sont dérivables en a alors B(f,g) est dérivable en a et :

$$B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a))$$

• Si f et g sont dérivables sur I alors $\mathrm{B}(f,g)$ est dérivable sur I et :

$$\mathrm{B}(f,g)' = \mathrm{B}(f',g) + \mathrm{B}(f,g')$$

Notation Dans le résultat précédent, la notation B(f,g) désigne la fonction $t \mapsto B(f(t),g(t))$.

APPLICATIONS UTILES

■ Dérivation d'une multiplication par une fonction scalaire

Si $\varphi: I \to \mathbb{R}$ et $f: I \to \mathbb{R}^n$ sont deux fonctions dérivables sur I alors φf est dérivable sur I avec :

$$(\varphi f)' = \varphi' f + \varphi f'$$

On utilise l'application bilinéaire $B(\alpha, x) = \alpha x$ pour $(\alpha, x) \in \mathbb{R} \times \mathbb{R}^n$.

■ Dérivation d'un produit scalaire

On suppose \mathbb{R}^n muni d'un produit scalaire noté $(\cdot|\cdot)$. Si $f: \mathbb{I} \to \mathbb{R}^n$ et $g: \mathbb{I} \to \mathbb{R}^n$ sont deux fonctions dérivables sur \mathbb{I} alors (f|g) est dérivable sur \mathbb{I} avec :

$$(f | g)' = (f' | g) + (f | g')$$

On utilise l'application bilinéaire B(x, y) = (x | y) pour $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

■ Dérivation d'un produit vectoriel

On suppose \mathbb{R}^3 muni de sa structure euclidienne canonique et orientée. Si $f: I \to \mathbb{R}^3$ et $g: I \to \mathbb{R}^3$ sont deux fonctions dérivables sur I alors $f \land g$ est dérivable sur I avec :

$$(f \wedge g)' = f' \wedge g + f \wedge g'$$

On utilise l'application bilinéaire $B(x, y) = x \wedge y$ pour $(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3$.

■ Dérivation d'un déterminant

Étant donnée une base \mathscr{B} de \mathbb{R}^2 , si $f: I \to \mathbb{R}^2$ et $g: I \to \mathbb{R}^2$ sont deux fonctions dérivables sur I alors leur déterminant dans la base \mathscr{B} , $\det_{\mathscr{B}}(f,g)$, est dérivable sur I avec :

$$\det_{\mathscr{B}}(f,g)' = \det_{\mathscr{B}}(f',g) + \det_{\mathscr{B}}(f,g')$$

On utilise l'application bilinéaire $B(x, y) = \det_{\mathcal{B}}(x, y)$ pour $(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2$.

PROPOSITION 8 – Composition de deux fonctions dérivables

Soient $f: I \to \mathbb{R}^n$ et $\varphi: J \to I$ deux fonctions et $\alpha \in J$.

■ Si φ est dérivable en α et si f est dérivable en a = φ(α) alors f ∘ φ est dérivable en α et :

$$(f \circ \varphi)'(\alpha) = \varphi'(\alpha)f'(\varphi(\alpha))$$

■ Si φ est dérivable sur J et si f est dérivable sur I alors $f \circ \varphi$ est dérivable sur J et :

$$(f \circ \varphi)' = \varphi'(f' \circ \varphi)$$

Remarque Dans l'écriture $\phi'(\alpha) f'(\phi(\alpha))$, bien remarquer que, à gauche, $\phi'(\alpha)$ est un scalaire que l'on multiplie, à droite, par le vecteur $f'(\phi(\alpha))$.

II. Fonctions vectorielles de classe \mathscr{C}^k

II. 1. Définitions et propriétés

DÉFINITION 2 – Dérivée k-ème

Soient $f: I \to \mathbb{R}^n$ une fonction et $k \in \mathbb{N}$.

Par récurrence, on pose $f^{(0)} = f$ et, si $k \ge 1$, on dit que f est k fois dérivable sur I si $f^{(k-1)}$ est dérivable sur I et on note $f^{(k)} = (f^{(k-1)})'$.

NOTATION On notera $\mathcal{D}^k(I,\mathbb{R}^n)$ l'ensemble des fonctions à valeurs dans \mathbb{R}^n k fois dérivables sur I.

DÉFINITION 3 – Classes \mathscr{C}^k et \mathscr{C}^{∞}

Soient $f: I \to \mathbb{R}^n$ une fonction et $k \in \mathbb{N}$.

On dit que la fonction f est de classe \mathscr{C}^k sur I lorsqu'elle est k fois dérivable et que $f^{(k)}$ est continue sur I. On dit que la fonction f est de classe \mathscr{C}^∞ sur I lorsqu'elle est de classe \mathscr{C}^k sur I pour tout entier $k \in \mathbb{N}$.

NOTATION On notera $\mathscr{C}^k(I,\mathbb{R}^n)$ et $\mathscr{C}^{\infty}(I,\mathbb{R}^n)$ l'ensemble des fonctions à valeurs dans \mathbb{R}^n de classes \mathscr{C}^k et \mathscr{C}^{∞} sur I.

Remarque Si $p \le k$ sont deux entiers naturels, alors $\mathscr{C}^{\infty}(I, \mathbb{R}^n) \subset \mathscr{C}^k(I, \mathbb{R}^n) \subset \mathscr{C}^p(I, \mathbb{R}^n)$.

PROPOSITION 9 – Classe \mathscr{C}^k et fonctions coordonnées

Soient $f: \mathbb{I} \to \mathbb{R}^n$ une fonction et $k \in \mathbb{N} \cup \{\infty\}$. On introduit de nouveau f_1, \ldots, f_n les fonctions coordonnées de f dans une base $\mathscr{B} = (e_1, \ldots, e_n)$ de \mathbb{R}^n .

Alors la fonction f est de classe \mathscr{C}^k sur I si et seulement si chacune des fonctions coordonnées de f est de classe \mathscr{C}^k sur I.

II. 2. Opérations sur les fonctions de classe \mathscr{C}^k

De façon analogue au cas de la dérivabilité, la classe \mathscr{C}^k se comporte bien vis-à-vis des opérations suivantes.

Proposition 10 - Combinaison linéaire

Soient $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^n$ deux fonctions, $\lambda \in \mathbb{R}$ et $k \in \mathbb{N} \cup \{\infty\}$. Si f et g sont de classe \mathscr{C}^k sur I alors $\lambda f + g$ est de classe \mathscr{C}^k sur I et:

$$\forall p \in [0, k], \quad (\lambda f + g)^{(p)} = \lambda f^{(p)} + g^{(p)}$$

Remarque Autrement dit, l'ensemble $\mathscr{C}^k(I,\mathbb{R}^n)$ a une structure d'espace vectoriel.

PROPOSITION 11 – Composition par une application linéaire

Soient $f: I \to \mathbb{R}^n$ une fonction, $u: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire et $k \in \mathbb{N} \cup \{\infty\}$. Si f est de classe \mathscr{C}^k sur I alors $u \circ f$ est de classe \mathscr{C}^k sur I et:

$$\forall p \in [0, k], \quad (u \circ f)^{(p)} = u \circ f^{(p)}$$

PROPOSITION 12 – Application bilinéaire et classe \mathscr{C}^k , formule de Leibniz

Soient $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^p$ deux fonctions, $B: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ une application bilinéaire et $k \in \mathbb{N} \cup \{\infty\}$. Si f et g sont de classe \mathscr{C}^k sur I alors B(f,g) est de classe \mathscr{C}^k sur I et :

$$B(f,g)^{(k)} = \sum_{\ell=0}^{k} {k \choose \ell} B(f^{(\ell)}, g^{(k-\ell)})$$

PROPOSITION 13 – Composition de deux fonctions dérivables

Soient $f: I \to \mathbb{R}^n$ et $\varphi: J \to I$ deux fonctions et $k \in \mathbb{N} \cup \{\infty\}$. Si φ est de classe \mathscr{C}^k sur J et si f est de classe \mathscr{C}^k sur J alors $f \circ \varphi$ est de classe \mathscr{C}^k sur J.

II. 3. Développement limité d'une fonction de classe \mathscr{C}^k

THÉORÈME 1 – Théorème de Taylor-Young

Soient $f: I \to \mathbb{R}^n$ une fonction définie sur un intervalle I et $a \in I$.

Si f est de classe \mathcal{C}^k sur I alors f admet un développement limité à l'ordre k en a donné par :

$$f(t) = \sum_{i=0}^{k} \frac{f^{(i)}(a)}{i!} (t-a)^{i} + o((t-a)^{k})$$

REMARQUES

- Le terme $o((t-a)^k)$ peut aussi être écrit $(t-a)^k \varepsilon(t)$ pour une fonction $\varepsilon: I \to \mathbb{R}^n$ vérifiant $\lim_a \varepsilon = 0$.
- En pratique, en notant $f_1, ..., f_n$ les fonctions coordonnées de f dans une base \mathscr{B} de \mathbb{R}^n , on peut obtenir un développement limité de f à l'ordre k en a de chaque f_i et en les « recombinant ».

ℰ Exemple 2

Justifier que la fonction $f: t \in \mathbb{R} \mapsto (t - \sin t, 1 - \cos t) \in \mathbb{R}^2$ admet un développement limité en 0 à l'ordre 4 et le calculer.