Exercic	e 15
1.	Théorème de continuité d'une virtégrole à paramètre:
11	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1+42
	ln(1+at)
	$\frac{1}{2} \text{ Jiso, } t \mapsto \frac{\ln(1+nt)}{1+t^2} \text{ est } C_{nn} \text{ sus } R^{+};$
	→ Yxe Ca, l) CRt, Yt>0:
	$\frac{\ln(1+2t)}{1+t^2} \leq \frac{\ln(1+bt)}{1+t^2} = \ell(t)$
	7/40 / //40
	et l'est con [0, to [et intégrable sur [0, to [puisque, en too,
	on a: $t^{3/2} \frac{\ln(1+6t)}{1+t^2} \rightarrow 0$ par C.C. (cutère de Riemann)
	1+++ + + + + + + + + + + + + + + + + +
	J. P. 1 0 and 1 0 0 5 0+
	de thu s'applique: fest co sur Rt.
2.	Théorème de classe C? d'une intégrale à paramètre:
	Ht70 x ln (1+xt) est C1 sus R+ 1+t2
	e V 2>0, time ln(1+xt) est co et intégrable sur Co, too [
	1++2
	(par citére de Riemann en +00, voir Q1)
	t 11 (6 0.1 To 11 To
	* \tan \o, t \in \frac{t}{(n+t^2)(n+at)} est Com sur [0, + \in [
	De tre [a, b) C R+, tt>0:
	t t aui et C° sur Co, + so [et (1+t2)(1+at)
	intégrable sur Co, + co C prisque, en + co: t 1 (1+2) (1+at) + co at2
	(1+t2) (1+at) at2
	de lin s'applique, fort C1 aux (R* et, par x>0:
	+20
	$f'(x) = \int \frac{t}{(n+t)(n+t)} dt$
	(1+xt)
3.	On whilise la relation de l'évancé (que l'an peut jusifier par parsage
	au même dénominateur). On a donc, pour 20:

Exercice 19 ••• *Transformée de Laplace*

On se donne $f: \mathbb{R}_+ \to \mathbb{C}$ une fonction continue et bornée. On appelle $transformée\ de\ Laplace\ de\ f$ l'application $\mathscr{L}(f)$ définie sur \mathbb{R}_+^* par :

$$\mathscr{L}(f)(x) = \int_0^{+\infty} f(t)e^{-xt} dt$$

1. Montrer que la fonction $\mathcal{L}(f)$ est bien définie et continue sur \mathbb{R}_+^* .

On utilise le théorème de continuité d'une intégrale à paramètre :

- Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto f(t)e^{-xt}$ est continue sur \mathbb{R}_+^* ;
- Pour tout $x \in \mathbb{R}_+^*$, la fonction $t \mapsto f(t)e^{-xt}$ est continue par morceaux sur \mathbb{R}_+ puisque f est continue sur \mathbb{R}_+ :
- Pour tout $x \in [a, b] \subset \mathbb{R}_+^*$ et tout $t \in \mathbb{R}_+$, on a, puisque f est bornée par hypothèse :

$$|f(t)e^{-xt}| \le ||f||_{\infty}e^{-at}$$

qui est une fonction continue par morceaux, positive et intégrable sur \mathbb{R}_+ (intégrale de référence).

Le théorème s'applique et prouve que $\mathcal{L}(f)$ est continue sur \mathbb{R}_+^* .

2. Déterminer la limite de $x\mathcal{L}(f)(x)$ quand x tend vers $+\infty$.

Soit x > 0. Dans l'intégrale définissant $\mathcal{L}(f)(x)$, qui est convergente d'après la question précédente, on réalise le changement de variable u = xt qui est de classe \mathscr{C}^1 et strictement croissant. On obtient :

$$x\mathcal{L}(f)(x) = \int_0^{+\infty} f\left(\frac{u}{x}\right) e^{-u} du$$

On utilise alors le théorème de convergence dominée à paramètre continu.

- Pour tout x > 0, la fonction $u \mapsto f\left(\frac{u}{x}\right)e^{-u}$ est continue par morceaux sur \mathbb{R}_+ . Quand $x \to +\infty$, elle converge simplement vers la fonction $u \mapsto f(0)e^{-u}$ (par continuité de f en 0) qui est elle-même continue par morceaux sur \mathbb{R}_+ .
- Pour tout x > 0 et tout $u \in \mathbb{R}_+$, on a :

$$\left| f\left(\frac{u}{x}\right) e^{-u} \right| \le \|f\|_{\infty} e^{-u}$$

qui est une fonction continue par morceaux, positive et intégrable sur \mathbb{R}_+ (intégrale de référence).

Le théorème s'applique et prouve que :

$$\lim_{x \to +\infty} \mathcal{L}(f)(x) = \int_0^{+\infty} f(0)e^{-u} du = f(0)$$

3. Si f admet une limite λ en $+\infty$, déterminer la limite de $x\mathcal{L}(f)(x)$ lorsque x tend vers 0^+ .

On utilise exactement la même technique que la question précédente, on trouve $\lim_{x\to 0^+} \mathcal{L}(f)(x) = \lambda$.

